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Section 1-Two level system for BIC and QBIC 

The fundamental physics behind can be described by 2*2 Hamiltonian matrices 

describing two coupled modes, which has been discussed explicitly in Ref [14]. The 

formula is given as follows 
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where E1 and E2 are the complex energies of the uncoupled system; V and W are the 

coupling constants. For an open system, all the parameters are complex, in general, 

and describe the interaction of leaky modes. The eigenvalues of the matrix can be 

obtained by diagonalization of the matrix, and are expressed as follows 
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Note that the imaginary parts of E± correspond to the decay rate of the coupled modes. 

The Q-factor for coupled and uncoupled modes are Q±=-Re(E±)/(2Im(E±)) and 

Q1,2=-Re(E1,2)/(2Im(E1,2)), respectively. For the sake of simplicity and without loss 



of generality, we assume E1= E0-0i and E2= E0+-0i, where 0 is the radiative rate of 

two uncoupled modes, and  is the frequency detuning, assumed to be real. The Eq.(2) 

can be further simplified as  
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By properly engineering the complex coupling VW, one may make the radiative 

decay rate for one mode as zero, which also means the infinite Q-factor (matching the 

definition of BIC). However, when complex coupling deviates from this critical value, 

ideal BIC will be converted into quasi-BIC. Fig.S1 gives one example of BIC and 

QBIC for two level systems with different value of complex coupling.     

 

 

 

Section 2-Derivation of ray optics model   

Apparently, the high Q modes, such as TE(m,m+2) and TE(m,m+1), has a diamond 

shape. In the following section, we use high Q mode TE(m,m+2) as an example to 

illustrate the ray optics model. The resonant frequency of high Q modes can be 

estimated by using the localization of ray14,28. The total phase shift of the dielectric 

resonator can be expressed as follows 

4na√1+R2


−  = 2(m +m+ 2)                (4) 

Where a is the width of rectangular NW, n is the refractive index of NW, R is the 

critical size ratio and  is the resonant frequency of NW. Note that the first term in 

Eq.(4) corresponds to the phase shift generated by rays travelling inside the resonator. 

The second term  is the phase induced by the reflection at the dielectric boundary, 

and can be expressed by 

 = 4(arctan1 + arctan2)                (5a) 

1 =
√n2sin21−1

ncos1
                          (5b) 

2 =
√n2sin22−1

ncos2
                          (5c) 

in which tan1=1/R, and 2=/2-1. 

Combing eq.(4) and eq.(5), we can obtain  
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Since the critical size ratio changes mildly, we can find that a/ shows linear 

dependence on the mode order m. Fig.S5 shows the a/ as a function of mode order m 

for both high Q modes TE(m,m+2) and TE(m,m+1). Good agreement can be found 

between numerical results based on FEM method and analytical results obtained from 

ray optics model.   

    



Section 3-Rabi-split of high and low Q modes for TE and TM cases 

For coupled two resonant modes, the complex eigenvalues of modes are  

E± =
E1+E2
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When real(E1)=real(E2) 

2  = 2√VW−
(E1i−E2i)
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When 2>0, avoid crossing of two modes is expected. For strong coupling regime, it 

is required 2>(1+2). When 20, these two modes will cross with each other. 

Therefore, we define the coupling strength between two modes as C=2/(1+2). 

Table S2 lists coupling strength between high and low Q modes for both TE and TM 

cases 

 

Section 4-Fano resonance fitting of experimental scattering spectrum   

Since the scattering spectrum shows Fano resonance features32, we use the following 

equation to fit the scattering to extract the resonant frequency and quality factor,  

sc = bg + A
(q0+−0)
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in which 0 and 0 are the damping rate and resonant frequency of the mode and q is 

the Fano parameters, A is the amplitude of the resonance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1 Pairs of high Q and Low Q modes in single rectangular NW for TE case    

TE(m,l) High Q mode Low Q mode Critical Ratio 

Type I: l=m+2 TE(m,m+2) TE(m+2,m) R0=1 

Type II: ml<m+2 TE(m,l) TE(m+2,l-2) 0<R0<1 

Type III: l>m+2 TE(m+2,l-2) TE(m,l) R0>1 

Type IV: m>l same as TE(l,m)  same as TE(l+2,m-2) 1/R0 

Note: eigenvalue nka(a=b/R) for TE(m,l) (m>l) is same as eigenvalue nkb for TE(l,m), and thus 

the critical ratio becomes 1/R0, where R0 is critical ratio for TE(l,m) 

 

 

Table S2. Coupling strength between high and low Q modes for single NW  

Modes m=1 m=2 m=3 m=4 

TE(m,m+2) 0.3764 1.5856 2.4249 1.8641 

TE(m+2,m) 

TE(m,m+1) --- 0.7080 1.8217 2.0804 

TE(m+2,m-1) 

TE(m,m) --- --- 0.6330 1.4843 

TE(m+2,m-2) 

TM(m,m+2) --- 0.2396 1.3427 0.1662 

TM(m+2,m) 

TM(m,m+1) --- -0.1788 

 

0.0207 0.5356 

TM(m+2,m-1) 

TM(m,m) --- --- -0.0369 

 

-0.0022 

TM(m+2,m-2) 

 

 

 

 

 

 

 



Table S3. Coupling strength between high and low Q magnetic modes in single disk 

and cuboid 

 

Shape Mode m=2 m=3 

 

 

3D Disk 

M(1,m,m+2) 2.0192 --- 

M(1,m+2,m) 

M(1,m,m+1) 0.7387 --- 

M(1,m+2,m-1) 

M(1,m,m) --- 0.5298 

M(1,m+2,m-2) 

 

 

3D Cuboid 

M(1,m,m+2) 2.0853 --- 

M(1,m+2,m) 

M(1,m,m+1) 0.6259  

M(1,m+2,m-1) 

M(1,m,m) --- 0.3572 

M(1,m+2,m-2) 

 

Table S4. Coupling strength between high and low Q electric modes in single disk and 

cuboid.  

 

 

Shape Mode m=1 m=2 

 

 

3D Disk 

E(1,m,m+2) --- 0.4076 

E(1,m+2,m) 

E(1,m,m+1) --- -0.1570 

E(1,m+2,m-1) 

 

 

3D Cuboid 

E(1,m,m+2)  1.0257 

E(1,m+2,m) 

E(1,m,m+1)  -0.6237 

E(1,m+2,m-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S1. BIC mode and QBIC mode in the two-level system. (a-b), Real and 

imaginary part of eigenvalues E± as a function of  for E1=2-0.01i and E2=2+-0.01i 

and VW=2.0e-4i. (c), The Q-factor of mode E+ as a function of  when complex 

coupling varied from 1.210-4i to 1.999910-4i . 

 

 

 

 
Figure S2. High Q mode TE(m,m+2). a-b, Real part and Q factor of eigenvalue for 

modes TE(1,3) and TE(3,1) as functions of size ratio R. c-d, Real part and Q factor of 

eigenvalue for modes TE(2, 4) and TE(4,2) versus size ratio R.  

 

 



 

 

Figure S3. Physical explanation of linear dependence of a/ on m for high Q mode. a, 

numerical results based on FEM and Analytical results based on ray optics for mode 

TE(m,m+2). b, numerical results based on FEM and Analytical results based on ray 

optics for mode TE(m,m+1).  

 

 

 

 

 

Figure S4. High Q mode TE(m,m+1). a-b, Real part and Q factor of eigenvalue for 

modes TE(2,3) and TE(4,1) as functions of size ratio R. c-d, Real part and Q factor of 

eigenvalue for modes TE(4, 5) and TE(6,3) versus size ratio R. 

 



 

Figure S5. Critical size ratio as function of m for mode TE(m,m+2), TE(m, m+1), and 

TE(m, m).  

 

Figure S6. a-b, Real part and Q-factor of the eigenvalue of modes TE(3,3) and 

TE(5,1) (Type II) as functions of size ratio R. c-d Real part and Q-factor of the 

eigenvalue of modes TE(4,4) and TE(6,2) (Type II) as functions of size ratio R e-f, 

Q-factor and a/ as functions of m for high-Q mode TE(m,m) at the critical ratio. 

 

 

 



 

Figure S7. a-b, Real part and Q factor of eigenvalue for modes TE(3,2) and TE(1,4) 

as functions of size ratio R. c-d, Real part and Q factor of eigenvalue for modes TE(3, 

4) and TE(1,6) versus size ratio R. 

 

 

 

 

 

 

 

 

 



 

Figure S8. Total Energy density and scattering efficiency for rectangular NW with 

different size ratio. a-b, Logarithm total energy density and scattering efficiency 

mapping versus R and ka. Two mode TE(2,3) and TE(4,1) are labeled as black and red 

circles. c-d, Logarithm total energy density and scattering efficiency mapping versus 

R and ka. Two mode TE(2,4) and TE(4,2) are labeled as black and red circles.    

 

  

 

 



 

Figure S9. Eigenfield Distribution of high Q mode for rectangular NW and 

orthogonal eigenchannels in circular NW. a-c, eigenmode TE(3,4) and its 

eigenchannles TE12,TE31,TE51. d-f, eigenmode TE(5,2) and its two eigenchannles 

TE12,TE32.  

 

 

 

 
 

Figure S10. Physical explanation of high Q modes. a, Multipolar contribution on 

scattering cross section of the square NW under the excitation oblique incidence plane 

wave (=15). b, Multipole analysis on the eigenfields of two modes TE(2,4) and 

TE(4,2). c, E(k) mapping obtained from Fourier transformation of eigenfields for two 

modes. d, E(k0) extracted from E(k) mapping at k=k0. e, Multipolar contribution on 

scattering cross section of the rectangular NW with R=0.855 under the excitation 

oblique incidence plane wave (=15). f, Multipole analysis on the eigenfields of two 

modes TE(2,3) and TE(4,1). g, E(k0) obtained from Fourier transformation of 

eigenfields for two modes. h, E(k0) extracted from E(k) mapping at k=k0. 

 



 

Figure S11. Eigenfield Distribution of high Q mode for rectangular NW and 

orthogonal eigenchannels in circular NW. a-b, eigenmode TE(2,3) and its 

eigenchannle TE31. c-d, eigenmode TE(4,1) and its eigenchannel TE12. e-f, eigenmode 

TE(2,4) and its eigenchannel TE41. g-h, eigenmode TE(4,2) and its eigenchannel TE22. 

 

 

 

Figure S12. a-b, Real part and Q factor of eigenvalue for modes TM(3, 3) and 

TM(5,1) versus size ratio R. c-d, Real part and Q factor of eigenvalue for modes 

TM(4, 4) and TM(6,2) versus size ratio R. 



 

 

 

 

Figure S13. a-b, Real part and Q factor of eigenvalue for modes TM(2, 4) and 

TM(4,2) versus size ratio R. c-d, Real part and Q factor of eigenvalue for modes 

TM(3, 5) and TM(5,3) versus size ratio R. 



 

Figure S14. Mode profile evolution as function of size ratio for TE and TM cases. 

a-e, Ez of TE(2,3) at R=0.60,0.70,0.775,0.850,0.950. f-j, Ez of TE(4,1) at 

R=0.60,0.70,0.775,0.850,0.950.  k-o, Hz of TM(2,3) at R=0.70,0.75,0.83,0.90,0.95. 

p-w, Hz of TM(4,1) at R=0.70,0.75,0.83,0.90,0.95. 

 

 

 

 

 

 

 



 

Figure S15. Coupling between high and low Q modes. a, Coupling strength between 

modes TE(2,3) and TE(4,1). b, Coupling strength between modes TM(2,3) and 

TM(4,1). 

 

 

Figure S16. Multipole Analysis on high Q and low Q mode. a-b, Multipole 

decomposition of TE(2,3) and TE(4,1). c-d, Multipole decomposition of TM(2,3) and 

TM(4,1). 

 

 



 
 

Figure S17. Q factor and a/ . a-c, Q factor versus m for high Q modes TM(m,m+2), 

TM(m,m+1) and TM(m,m). d-f, a/ versus m for high Q modes TM(m,m+2), 

TM(m,m+1) and TM(m,m). 

 

 

Figure.S18 critical ratio of high Q mode as function of mode order m for modes 

TM(m,m+2), TM(m,m+1) and TM(m,m). 

 



 

 

Figure S19. Multipole analysis on the high Q mode for TM case. a, Multipole 

analysis on the high and low Q mode TM(2,4) and TM(4,2). b, Fourier transformed 

E(k0) modes TM(2,4) and TM(4,2). c, Multipole analysis on the high and low Q mode 

TM(2,3) and TM(4,1). d, Fourier transformed E(k0) modes TM(2,3) and TM(4,1).   

 

 

  

 

 

 



Figure S20. High Q mode property as function of refractive index. a, Q factor versus 

n for TE(2,4) and TE(3,5). b, Q factor versus n for TE(2,3) and TE(3,4). c, Q factor 

versus n for TE(3,3) and TE(4,4). d, Q factor versus n for TM(2,4) and TM(3,5). e, Q 

factor versus n for TM(2,3) and TM(3,4). f, Q factor versus n for TM(3,3) and 

TM(4,4). 

 

 

 

 

 

Figure S21 High Q modes in single cuboid. a-b, Nreal (a) and Q factor (b) versus size 

ratio for magnetic modes M(1,3,3) and M(1,5,1). 

 

. 



 

Figure S22 Length effect of nanowire axis on eigenvalue of leaky modes for NW. (a) 

Real part of eigenvalue for mode TE(2,3) versus L/a for R=0.775 while black solid 

line represents 2D calculation and red dot represents 3D calculation; (b) Q-factor for 

mode TE(2,3) versus L/a; (c) Eigenfield distribution for TE(2,3) while the length of 

NW is finite; (d) Real part of eigenvalue for mode TE(2,4) versus L/a for R=1.00 

while black solid line represents 2D calculation and  red dot represents 3D 

calculation; (e) Q-factor for mode TE(2,4) versus L/a; (f) Eigenfield distribution for 

TE(2,3) while the length of NW is finite;  

 

 

 



 

Figure S23 Magnetic high-Q modes in single disk. a-b, Nreal (a) and Q factor (b) 

versus size ratio for magnetic modes M(1,2,3) and M(1,4,1). c-d, Nreal (c) and Q factor 

(d) versus size ratio for magnetic modes M(1,2,4) and M(1,4,2). 

 

 



Figure S24 Electric high-Q modes in single disk. a-b, Nreal (a) and Q factor (b) versus 

size ratio for magnetic modes E(1,2,3) and E(1,4,1). c-d, Nreal (c) and Q factor (d) 

versus size ratio for magnetic modes E(1,2,4) and E(1,4,2). 

 

 

 

 

Figure S25.  a, Fano fitting for a=970nm. b, Fano fitting for a=990nm. 

 

 

Figure S26. Typical Examples of Fano resonance fitting of scattering spectrum for 

rectangular NW with different width. a, a=1080nm. b, a=1090nm. c, a=1110nm. d, 

a=1170nm. 



 

Figure S27. Experimental verification of high Q mode TE(3,5) in single silicon NW 

for TE Case. a-b, Measured and numerically calculated scattering spectrum for single 

NW with different width while the thickness of NW is fixed as 1130nm. c-d, 

Extracted Q factor. 

 



 

Figure S28. Experimental verification of high Q mode TM(3,5) in single silicon NW 

for TM Case. a-b, Measured and numerically calculated scattering spectrum for single 

NW with different width while the thickness of NW is fixed as 1130nm. c-d, 

Extracted Q factor and Nreal versus R. 
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